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Abstract. A major limit to steady state and advanced high βp operation of tokamaks of reactor class is due
to the onset of tearing modes that develop magnetic and may cause loss of energy confinement or a major
disruption. Here the structure of a classical problem about the effects of external control helical fields is
analysed and it is shown to offer a general paradigm of response of low order classical and neoclassical
tearing modes to a wide class of external perturbations. New results of principle on the structural stability
of the response model are obtained, leading to a clear interpretation of the role of “seed islands” in the
onset of neo-classical tearing modes and the role of finite ion larmor radius corrections to Ohm’s law.

PACS. 52.35.Py Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing,
trapped-particle, flute, Rayleigh-Taylor, etc.) – 52.25.Fi Transport properties – 52.35.Mw Nonlinear
phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling,
ponderomotive effects, etc.)

1 Introduction

The prospects of a realistic thermonuclear reactor based
on tokamaks rest as much on the reaching suitable plasma
energy and confinement target values, as on the reliability
of operation of a tokamak for an economically significant
duration of the discharge. The attainment of thermonu-
clear regimes, with high temperature, very long resistive
diffusion time scales, high βp effects, is finally dependent
on a major problem of tokamak physics and operation,
namely the control of the inevitable instability of slow-
growing resistive modes. Some basic questions raised in
the early times of investigation of tokamak plasma stabil-
ity [1–4] remain open and are worth reconsidering because
they offer important paradigms of response embracing
eventually issues relevant to advanced and neo-classical
(high βp) regimes. Referring to some very old and some
recent experimental results, we reconsider here generic
structural properties of the nonlinear response of single
helicity low order tearing modes to the boundary condi-
tions imposed by external active helical conductors with
the pitch resonant with the closed field lines of magnetic
surfaces having a rational safety factor q.

2 Structure of tearing modes models
in tokamaks

Our interest is focussed on the structure of well-known ∆′
analytical models of tearing modes stability [5]. Although
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one should be aware of the role of mode rotation in the
interaction with phased resonant external fields it is mean-
ingful to consider a conceptual “stabilisation” scenario in
which the phase difference is kept constant by some feed-
back loop and the sole control parameter is the ampli-
tude of the external field. Where appropriate we support
the analytical arguments with results of numerical calcu-
lations from our non-linear RMHD code which solves the
poloidal flux (ψ) and stream function (u) time evolution
equations (Eqs. (1, 2) with external forced boundary con-
ditions. For our purposes it is adequate to assume that the
plasma is of uniform density, of circular cross-section of ra-
dius a, surrounded by a thin coaxial resistive wall and an
initial equilibrium current profile J0(r) specified in terms
of the safety factor q(r). At radius b, a < b � d, in vac-
uum, between the plasma minor radius a and the vessel
radius d, the active coils system is modelled by an ideal
helical surface current IE = I0Re(ei(mϑ−φE)) with pitch
ratio m/n resonant with the safety factor q at r = rs.
Non-linear effects are considered just for the modification
of the equilibrium poloidal flux, ensuring mode satura-
tion (second order terms such as v · gradv are therefore
neglected)

∂ψ

∂t
+ B ·∇u = −η0jz +E0 (1)

ρ0
∂∇2u

∂t
= B ·∇jz + ν∇4u. (2)

The magnetic field and plasma velocity are written in
terms of the magnetic flux function (ψ ≡ ψ0 + ψ̃) and
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stream function u as B = Bz0ẑ + ∇ × (ψẑ) and v =
∇ × (uẑ). The subscript 0 denotes equilibrium quanti-
ties and ρ0, ν, η0 and E0 are respectively, the plasma
density, viscosity, resistivity and the equilibrium toroidal
electric field. The numeric simulations were done with a
normalised version of equations (1, 2) where the follow-
ing normalisation was used: ψ → ψ/aBz0, u→ u(τA/a2),
t → t/τA, x → r/a where τA = a/

√
B2
z0/µ0ρ0 is the

Alfvèn time, τν = ρ0a
2/ν is an effective viscous time, τR =

µ0a
2/η0 is the resistive diffusion time and S = τR/τA. A

magnetic Reynolds number S of the order 104 and a very
low viscosity are used, since they don’t affect the overall
results.

The boundary conditions matching the external driv-
ing fields are enforce continuity of the normal component
of the magnetic field, and of the tangential component
of E + v ×B and vanishing of the normal component of
the velocity at the plasma vacuum interface, as appropri-
ate for a resistive plasma with null current density at the
edge [6].

We first consider an initial equilibrium q profile that
is linearly unstable to the tearing instability (i.e. with a
positive jump of the logarithmic derivative ∆′ of the flux
perturbation at the rational surface) for mode numbers
(m = 2, n = 1), in presence of an applied helically reso-
nant current. This case, was analysed first by Monticello
et al. [7] and led to the theoretical identification of the so-
called “flip” instability, in which the application of a con-
stant boundary condition (a helical current, referred to as
IE,thresh. with a negative value) meant to restore ∆′ = 0,
led on the contrary to another unstable state with ∆′ > 0.
This is a “flip” state because the value of the reconnected
flux ψs at the rational surface, consistent with the bound-
ary conditions, changes sign, and this can be interpreted
as a shift of π of the equilibrium position of the “O” point
of the topology tearing perturbation. In a conventional
description of such events, the numerical solution of the
standard linear tearing mode equation with different nega-
tive current boundary conditions shows, that the equation
∆′(w) = 0 (where w =

√
ψs/k, and k = (Rq′/16q2)rs) can

have one, two or no real roots. For IE > IE,thres. the larger
root is the stable saturated island width; for IE < IE,thres.

no roots exist and ∆′(w) < 0 therefore in this descrip-
tion the island is bound to decrease indefinitely, while for
IE ≡ IE,thres. the equilibrium state is unstable and the is-
land should also be prone to decrease. A first outcome of
the non-linear time dependent calculations of the recon-
nection process is that the mode “flips” if the time trace of
ψs has an inflection point d2ψs/dt2 = 0 with dψs/dt < 0
and not exactly when the linear ∆′ is annihilated (this
small difference attenuates for viscous plasmas). Inciden-
tally, in experiments it should be far easier to detect the
flip condition from d2ψs/dt2 = 0 than ∆′ = 0.

The most important message of the non-linear numer-
ical code is given by the global response curve of the sys-
tem to the external control parameter |IE|, shown in Fig-
ure 1 presenting the dependence of the modulus of the
state variable ψs on the control variable |IE|. As |IE| varies
the saturated reconnected flux can be squeezed toward a

Fig. 1. Absolute value of reconnected flux |ψs| vs. absolute
value of external control current, |IE| calculated by a full non-
linear tearing mode code in large R/a approximation.

minimum, at a critical value of |IE| where it pops back to
an amplified saturated value. This result is the basis for
a comparison and new interpretation of the general ana-
lytical form of forced (non-linear) flux reconnection at a
rational surface r = rs, in the magnetic island instanta-
neous frame:

τR
rs

dψs

dt
= 2
√
k|ψs|

{
∆′0(ψs) +

λ

ψs

}
≡ τR
rs
f(ψs, λ) (3)

where the control parameter λ is proportional to the exter-
nal current. Equation (3) can be identified as a modified
Rutherford equation. Throughout the paper, the magnetic
field shear parameter (k) is not considered as a control pa-
rameter but just a constant relating the reconnected flux
at the q rational surface to the corresponding magnetic
island width. For a theoretical interpretation one can con-
sider first the simplest case of a generic non-linear modi-
fication of the equilibrium current profile [8]

∆′0(ψs) ≡ ∆′0
(

1− w−1
sat

√
|ψs|/k

)
+ ... with ∆′0 > 0. (4)

This describes satisfactorily the spontaneous reconnection
process up to saturation in an ohmic tokamak plasma. It
is important, and not trivial, to note that in response to
an external control of amplitude λ the value of the re-
connected flux ψs(t) can be either positive or negative at
any given time. It is also important and not fortuitous
that the control term, that physically represents an exter-
nally driven e.m.f. with the purpose of counteracting the
spontaneous flux change, has a dependence ∝ ψ−1

s . This
encompasses both the cases of modification of the bound-
ary conditions by currents localised out of the plasma and
the case of currents driven, say by radio frequency (rf),
within a magnetic island. The mode evolution described
by the equation

dψs

dt
= f(ψs(t), λ(t))

is a non-linear, time dependent problem with an arbitrar-
ily time dependent inhomogeneous term. A first essential
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Fig. 2. Rate function F (X = ψs, λ) vs. the state variable X
for “ohmic” tearing mode model (7) at different values of the
control variable λ. Intersections with the X-axis represent the
equilibrium states (stable and unstable) of the system.

analysis can be however carried out for constant values
of λ, inspecting the complex roots of F =

√
|ψs|f(ψs, λ)

that has the same sign of dψs/dt. For the model (4) Fig-
ure 2 shows the behaviour, as λ is varied, of the three roots
that represent the equilibrium values of reconnected flux,
corresponding to finite size magnetic islands. The zeros of
the function F (−λ) are the opposite of those of F (λ). In
the traditional discussion [9] of the Rutherford equation
(for λ > 0) only the two real positive roots correspond-
ing to an unstable island width and a saturated stable
one are visible. Presently we draw attention also on the
third, real negative root, corresponding also to another
stable island value. At the critical values (ψsc, λc) where
F (ψsc, λc) = 0, Fψ(ψsc, λc) = 0 the two (positive) roots
coalesce and explosive transition to the third root occurs,
that corresponds to an island value larger than the satu-
rated value. This describes the mechanism of the so-called
“flip” instability rigorously, with a consistent formalism
that allows treatment of problems with similar structure.
In detail for the benchmark model (4) the fixed point is
ψsc = (4/9)w2

s , λc = (4/27)∆′0w
2
s and the lowest order

expansion suitable to study the local non-linear stability
near the fixed point is

F (ψ, λ) ∼= (λ− λc)Fλ(ψsc, λc)

+
1
2

(ψ − ψsc)2Fψψ(ψsc, λc) + ... (5)

This expression with variables re-scaling and up to a dif-
feomorphic transformation, leads to the identification of
a local generic fold equilibrium manifold of normal form
g(z, µ) = z2−µ in the plane (z ∝ (ψ−ψsc), µ ∝ (λ−λc)).
This form leads locally to a tangent bifurcation [10–12]
with explosive rate of departure

d(ψs − ψsc)
dt

= ∓(ψs − ψsc)2

from the singular points to the “flipped state”. The over-
all response of the system to the control parameter (cur-

Fig. 3. Equilibrium manifold F (X = ψs, λ) = 0 vs. the control
variable λ for “ohmic” tearing mode model (7). The tangent
bifurcation points are apparent.

rent) is summarised in Figure 3 where the amplitude of the
flux ψs is plotted against the (positive and negative) values
of controlling current. The S shape of the locus of the roots
of F (ψsc, λc) = 0 indicates tangent bifurcations at posi-
tive and negative values of λ. By transforming this curve
(by reflection of the left-hand and bottom half-planes) in
a plot of |ψs| versus |λ| one obtains exactly the response
curve Figure 1 of the non-linear code. An important ques-
tion from singularity theory concerns the structural sta-
bility of the scalar bifurcation problem F (ψsc, λc) = 0 as
Fψ(ψsc, λc) = 0 parameters are varied and it is well known
that the fold bifurcation is structurally stable [10–12].

In present day tokamak performance at relatively large
values of βp a significant problem is the onset of neoclas-
sical tearing modes (NTM) due to the reduction of the
pressure gradient driven bootstrap current over a “seed”
island ws formed al low q rational surfaces. This motivates
also the investigation of static or quasi-static “error” field
compensation systems that can reduce the danger of for-
mation of seed islands by error field driven reconnections.
In these specific circumstances, for finite plasmas with a
non negligible ratio βp of kinetic pressure over poloidal
magnetic energy density, the form of the instability param-
eter ∆′0(ψs) can be written singling out in a basic form the
destabilising neoclassical [13] and of the ion polarisation
current contributions [14,15], resulting from the require-
ment B ·∇(J‖/B) = −∇⊥ · J⊥ up to order (ρiθ/W )2

∆′0(ψs) ≡ −|∆′0|+ βθab

√
|ψs|/k

|ψs|/k + w2
d

− βθap
k3/2

|ψs|
√
|ψs|

(6)

where ab = O(1) is a net, effective, profile dependent co-
efficient that includes the bootstrap current contribution,
the stabilising Greene Glasser and Johnson term and the
magnetic well term due to cross-section triangular defor-
mations [18,19] and ap � 1 is the ion polarisation current
effect [14,15], wd is the diffusive cut-off island width de-
scribed in reference [9] “χ-model”. These expressions are
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Fig. 4. Equilibrium manifold G(X = ψs, λ) = 0 vs. the con-
trol variable λ for “neoclassical” tearing mode model (6). The
tangent bifurcation points and the local generic structure are
apparent in the insert.

most often considered in the context of extensions of the
Rutherford equations written in terms of the strictly pos-
itive island width w ∝

√
|ψs|.

The bifurcation analysis is extended to the neo-
classical case [13] (see Eq. (7)) considering the zeros of

G = ψ2
s

√
|ψs|

dψs

dt

≡ ψ3
s

[
−|∆′0|+ βθab

√
|ψs|/k

|ψs|/k + w2
d

−βθap
k3/2

|ψs|
√
|ψs|

]
+ λψ2

s (7)

that has the same sign of dψs/dt but also the root ψs = 0
that is not an equilibrium state of the original equation.
Applying the same procedure to the case with vanish-
ing ion polarisation current (ap = 0), we obtain the S
shaped locus of the roots of G (Fig. 4) vs. λ, similar to
Figure 3 and therefore generic and structurally stable. In-
spection of Figure 4 shows also a known mechanism of
trigger of a neoclassical mode by external (error) helical
fields or equivalent source [9]. In a rotating plasma, start-
ing from the non equilibrium state ψs = 0 (no island) as
soon as the control parameter (external current) changes,
the mode amplitude increases passing through a sequence
of very small saturated states. As shown in reference [20]
the forced reconnection process evolves in such a way that
the phase difference ∆ϕ between the driving field and the
mode tends to a steady value in the range 0� ∆ϕ < π/2.
This just reduces the effective value of the control pa-
rameter λ ≡ λ(∆ϕ). However when a threshold in the
λ(∆ϕ) is passed the system undergoes a tangent bifur-
cation and the mode explodes toward a high saturated
equilibrium amplitude. It has already been shown in ref-
erence [9] that the bifurcation for the NTM case can be
triggered by error field amplitudes much lower than that
required to amplify ∆′ stable modes without neoclassical

Fig. 5. Equilibrium manifold G(X = ψs, λ) = 0 vs. the
control variable λ for “neoclassical model with ion polarisa-
tion current”. The insert shows the non generic structure due
to ap 6= 0.

effects. Inclusion of rotation increases the threshold for bi-
furcation substantially, by a factor 1/| cos(∆ϕ)|. When the
model (6) includes a finite, albeit small, ion polarisation
current term ap 6= 0, of either sign, the situation is sub-
stantially changed. The locus of the roots of G(λ) = 0
shown in Figure 5 is not generic and structurally sta-
ble [12] as in the previous cases. The flip bifurcation is
prevented except at vanishing of the ion polarisation term
ap ∝ (rs/R)3/2ρ2

iθω
2
∗pe

(ω − ωE)(ω − ωT), where ωE is the
electric drift frequency and ωT is the natural mode fre-
quency defined in references [14,15].

The role of this term, that takes into account the low
collisionality reduction of the neoclassical effects, is widely
debated [14–22]. The ion polarisation term persists even
when the mode phase velocity vanishes under the effect of
an error field and it prevents the bifurcation of NTM to be
triggered by small error fields. Indeed, as long as ap 6= 0,
the small saturated states that proceed to a bifurcation are
no longer accessible. To reach a saturated equilibrium, a
threshold value, scaling as ψthr ∝ λ−1, must be overcome
by an initial seed island [15,16], induced by effects other
than external error fields, linked possibly to coupling with
other modes like the (m = 1, n = 1), capable of produc-
ing a seed island larger than that corresponding to the
first root shown in Figure 5. However in case of synchro-
nism of the phase velocity of the external perturbation
with the plasma natural rotation at the rational surface
the non-generic state-control diagram of Figure 5 is de-
stroyed and could allow in principle a thresholdless onset
of NTM modes and incidentally also the flip instability.
We remark however that the flip is unimportant in the
case of control by an un-phased rf driven current localised
within a strip encompassing the island, as a shift of π of
the “O” point would not matter for the task of stabilisa-
tion. This is probably the situation met in some successful
experiments [23,24].
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3 Conclusion

In conclusion we have given a simple but sufficiently rig-
orous picture of phenomena often described intuitively
identifying the generic structure of tangent bifurcations
in both classical tearing mode flipping and NTM trigger-
ing akin to mechanical beam buckling instabilities [10] well
confirmed by non-linear RMHD calculations. The role of
ion-polarisation current has been discussed from the point
of view of structural stability irrespective of its sign. It is
argued that NTM’s are more likely destabilised by inter-
nal seed island formation than by external error fields.
These questions of principle have immediate bearing on
interpretation of experiments.

One of the authors (E.L.) acknowledges constructive comments
by B. Coppi and M. Rosenbluth.
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